

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

International Technology Roadmap for Semiconductors

ADVANTEST.

Dave Armstrong – Advantest

Ira Feldman – Feldman Engineering

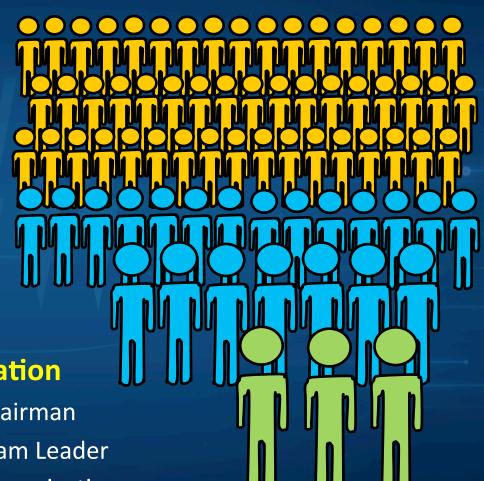
Marc Loranger - FormFactor

Overview

- Who are we?
- Why a roadmap?
- What is the purpose?
- Example Trends
- How can you help?
- Summary

ITRS Team

Large ITRS Team


- More than a 1,000 professionals
- Over 100 companies
- 16 Working Groups

Test Working Group

- More than 70 professionals
- More than 45 companies

Three authors of this presentation

- Dave (Advantest) Test TWG Chairman
- Marc (FormFactor) Probing Team Leader
- Ira (Feldman Engineering) Communications

Why a Roadmap?

 The ITRS is generated each year to report on the technological fundamentals of our industry.

 In addition, by extrapolating on the trends inherent in today's semiconductor technology we identify disconnects and discuss possible approach to overcome these challenges.

 Through this effort we all can get a better sense of the path of least resistance and align our plans and standards in a fashion which is most likely to succeed.

What Is and What Isn't the ITRS

What Is the ITRS

- The combined expert opinion by this team.
- The results of many different technology models.
- A "best guess" of where the industry is heading for the next 15 years.
- A highlighting of disconnects and significant challenges.

What Isn't the ITRS

- It doesn't implement or define Moore's Law – it just tries to predict how things will likely trend.
- A commitment from the involved companies to do what is reported.
- Specific solutions or prescriptive.

ITRS Process

Entire Team Publishes a New Roadmap Yearly

Sub-Team
Analyzes
Implications

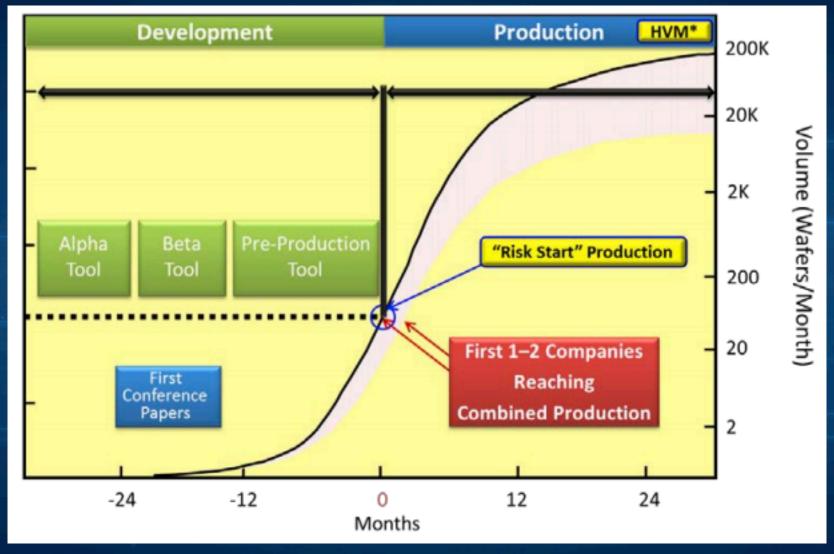
Working Group
Discusses
Challenges

Implications
Discussed with Other
Working Groups

Sub-Team Reconciles Feedback from Other Groups

Test Complexity Drivers

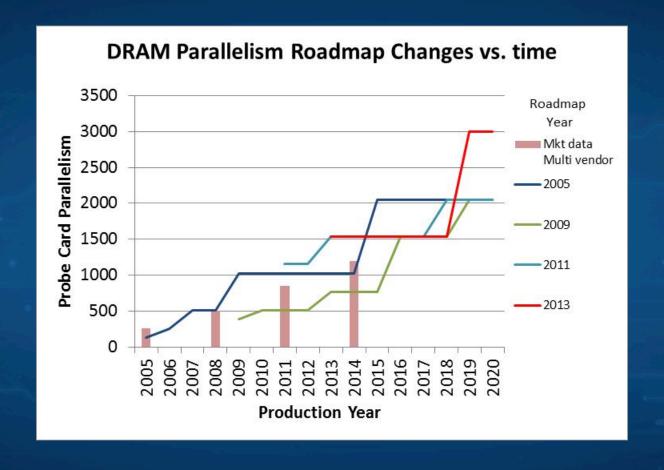
Device trends


- Increasing device interface bandwidth
- Increasing device integration (SoC, SiP, MCP, 3D packaging)
 - Homogenous & heterogeneous dies → functional disaggregation
- Integration of emerging and non-digital CMOS technologies
- Complex package electrical and mechanical characteristics
- Device characteristics beyond one sided stimulus/response model
- 3 Dimensional silicon multi-die and Multi-layer
- Integration of non-electrical devices (optical, MEMS, etc.)
- Fault Tolerant Architectures and Protocols

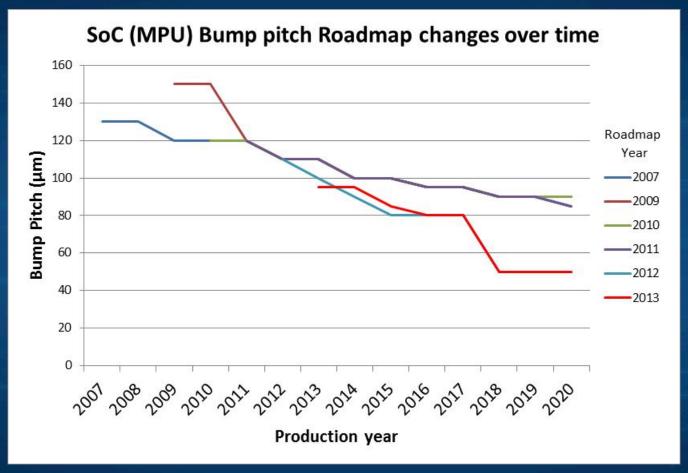
Industry trends

450 mm wafer transition

Date = When in Production



ITRS 2013 Overview: Figure 1a A Typical Technology Production "Ramp" Curve (within an established wafer generation)


Wafer Probe Requirements

Parameter	MPU & ASIC	DRAM	NAND	RF & AMS	LCD Drivers	CIS
Wirebond – inline pad pitch	X	X	X	X	X	X
Wirebond – stagger pad pitch	X			Χ	X	
Bump – array pitch	X			X		
I/O Pad Size	X	X	X	X		X
Wafer Test Frequency	X	X	X			X
High Speed I/O Frequency	X				X	X
Wirebond - Probe Tip Diameter	X	X	X	X	X	X
Bump – Probe Tip Diameter	X			X		
Probe Force	X	X	X		X	X
Probe (Active) Area	X	Χ	X	X	X	X
# of Probes per Touchdown	X	X	X	X	X	X
Maximum Current / Probe		X	X	Χ	X	X
Maximum Resistance		X	X		X	

Parallelism Trend

SoC (MPU) Bump Pitch Trend

Technology shift in 2012

Prober accuracy vs. Pad size

	20	13	2014		2015		2016		2017		2018	
DRAM												
Wirebond - inline pad pitch	55		50		45		40		40		40	
I/O Pad Size (µm)	X	Y	X	Y	X	Y	X	Y	X	Y	X	Y
Wirebond	45	45	40	45	40	40	35	40	35	40	35	40
Prober												
XY Accuracy(Probe to Pad) [um]	2	.0	2.0		2.0		2.0		2.0		2.0	
Z Accuracy(Probe to Pad) [um]	5	.0	5.0		5.0		5.0		5.0		5.0	
Chuck Planarity [+/-um]	7.	.5	7.5		7.5		7.5		7.5		7.5	

- Prober roadmap is not tracking with decreasing pad sizes
- An especially difficult issue for Full Wafer Contactor probe cards

Next Challenges for Probe Cards

- Decreasing pad / bump sizes and pitch
- Increasing parallelism SoC and Memory
- Increased use of die for MCP, 2.5D and 3D integration will drive more wafer sort
- 2 sided probing
- Testing stacked devices (e.g. HBM)
- MEMS and sensor sort test
- Cost of test as a driver

Opportunities for Involvement!

Download ITRS data at:

http://www.itrs.net/Links/2013ITRS/Home2013.htm

Provide feedback on test data at:

http://j.mp/ITRSTestSurvey

Sign up:

dave.armstrong@advantest.com

Summary

Great Tool

Well accepted independent industry wide reference

Challenges

- Requires broad-based inputs
- Track potential disruptive technology

Help Us

- Get Involved!

